
EI Studio - Spectral Analysis
By Marcelo Rovai in March 2023

Extracting meaningful features from time-series signals. How does Edge
Impulse Spectral Block work?

Introduction

I have written several tutorials on Embedded Machine Learning projects in
recent years. Among them, I explored a few devices capturing data from
accelerometers such as Sensor DataLogger, TinyML Made Easy: Anomaly
Detection & Motion Classification, TinyML Made Easy: Gesture Recognition,
and TinyML - Motion Recognition Using Raspberry Pi Pico.

https://www.hackster.io/mjrobot/sensor-datalogger-50e44d
https://www.hackster.io/mjrobot/tinyml-made-easy-anomaly-detection-motion-classification-958fd2
https://www.hackster.io/mjrobot/tinyml-made-easy-anomaly-detection-motion-classification-958fd2
https://www.hackster.io/mjrobot/tinyml-made-easy-gesture-recognition-ce13a5
https://www.hackster.io/mjrobot/tinyml-motion-recognition-using-raspberry-pi-pico-6b6071


What did all those projects have in common? Data come from
accelerometers and Edge Impulse Studio, a leading development platform
for edge-device machine learning. With the Studio, collecting time-series
datasets and preprocessing them for input features on a Machine Learning
model training was possible.

Data preprocessing is a challenging area for embedded machine learning.
Still, Edge Impulse helps overcome this with its digital signal processing
(DSP) preprocessing step and, more specifically, the Spectral Features Block
for accelerometers.

But how it works under the hood? Let's dig into it.

Extracting Features Review

Extracting features from a dataset captured with accelerometers involves
processing and analyzing the raw data. Accelerometers measure the
acceleration of an object along one or more axes (typically three, denoted as
X, Y, and Z). These measurements can be used to understand various
aspects of the object's motion, such as movement patterns and vibrations.
Here's a high-level overview of the process:

Data collection: First, we need to gather data from the accelerometers.
Depending on the application, data may be collected at different sampling
rates. It's essential to ensure that the sampling rate is high enough to capture
the relevant dynamics of the studied motion (The sampling rate should be at
least double the maximum relevant frequency present in the signal).

https://www.edgeimpulse.com/


Data preprocessing: Raw accelerometer data can be noisy and contain
errors or irrelevant information. Preprocessing steps, such as filtering and
normalization, can help clean and standardize the data, making it more
suitable for feature extraction. The Studio does not perform standardization,
so sometimes when working with Sensor Fusion could be necessary to
perform this step before uploading data to the Studio. See the great Shawn
Hymel's tutorial Data Curation and Feature Scaling with Edge Impulse to learn
more about it.

Segmentation: Depending on the nature of the data and the application,
dividing the data into smaller segments or windows may be necessary. This
can help focus on specific events or activities within the dataset, making
feature extraction more manageable and meaningful. The window size and
overlap (window increase) choice depend on the application and the
frequency of the events of interest. As a thumb rule, we should try to capture a
couple of "cycles of data".

Feature extraction: Once the data is preprocessed and segmented, you can
extract features that describe the motion's characteristics. Some typical
features extracted from accelerometer data include:

● Time-domain features describe the data's statistical properties within
each segment, such as mean, median, standard deviation, skewness,
kurtosis, and zero-crossing rate.

● Frequency-domain features are obtained by transforming the data
into the frequency domain using techniques like the Fast Fourier
Transform (FFT). Some typical frequency-domain features include the
power spectrum, spectral energy, dominant frequencies (amplitude
and frequency), and spectral entropy.

https://www.youtube.com/watch?v=4jrcXkMIxXM


● Time-frequency domain features combine the time and frequency
domain information, such as the Short-Time Fourier Transform (STFT)
or the Discrete Wavelet Transform (DWT). They can provide a more
detailed understanding of how the signal's frequency content changes
over time.

In many cases, the number of extracted features can be quite large, which
may lead to overfitting or increased computational complexity. Feature
selection techniques, such as mutual information, correlation-based methods,
or principal component analysis (PCA), can help identify the most relevant
features for a given application and reduce the dimensionality of the dataset.
The Studio can help with such feature importance calculations.

Let's explore one of my TinyML Motion Classification projects in more detail.

A TinyML Motion Classification project

For this tutorial, we simulated mechanical stresses in transport, where our
problem was to classify four classes of movement:

● Maritime (pallets in boats)
● Terrestrial (palettes in a Truck or Train)
● Lift (Palettes being handled by Fork-Lift)
● Idle (Palettes in Storage houses)

https://www.hackster.io/mjrobot/tinyml-made-easy-anomaly-detection-motion-classification-958fd2


The accelerometers provided the data on the palette (or container):

We will simulate the container movements during transportation by hand:



Below is one sample (raw data) of 10 seconds, captured with a sampling
frequency of 62.5Hz:

Data Pre-Processing

As discussed in the last section, the raw data captured by the accelerometer
(a "time series" data) should be converted to "tabular data", using one of the
typical Feature Extraction methods described.

We should segment the data using a sliding window over the sample data for
feature extraction. The project captured every 10 seconds of accelerometer
data with a sample rate of 62.5 Hz. A 2 seconds window captured 375 data
points (3 axis x 2 seconds x 62.5 samples). The window was slid each 80ms,
creating a larger dataset where each instance has 375 "raw features."



On the Studio, the previous version (V1) of the Spectral Analysis Block
extracted as time-domain features only the RMS. For the frequency domain,
the peaks and frequency (using FFT), and the power characteristics (PSD) of
the signal over time resulted in a fixed tabular dataset of 33 features (11 per
each axe),

Those 33 features were the Input tensor of a Neural Network Classifier.



In 2022, Edge Impulse released version 2 of the Spectral Analysis
block, which we will explore here.

EI Studio - Spectral Analysis Block V.2 under the hood

In Version 2, Time Domain Statistical features per axis/channel are:

● RMS
● Skewness
● Kurtosis

And the Frequency Domain Spectral features per axis/channel are:

● Spectral Power
● Skewness (in a next version)
● Kurtosis (in a next version)

In this link, we can have more details about the feature extraction.

You can follow the explanation, playing with the code using my Google
CoLab Notebook: Edge Impulse Spectral Analysis Block Notebook.

Clone the public project: https://studio.edgeimpulse.com/public/198358/latest

Start importing the libraries:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import math

from scipy.stats import skew, kurtosis

from scipy import signal

from scipy.signal import welch

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://colab.research.google.com/github/Mjrovai/TinyML4D/blob/main/SciTinyM-2023/Edge_Impulse-Spectral_Analysis_Block/Edge_Impulse_Spectral_Analysis_Block_V3.ipynb
https://studio.edgeimpulse.com/public/198358/latest


from scipy.stats import entropy

from sklearn import preprocessing

import pywt

plt.rcParams['figure.figsize'] = (12, 6)

plt.rcParams['lines.linewidth'] = 3

From the studied project, let's choose a data sample from accelerometers as
below:

● Window: 2 seconds (2,000 ms):
● Sample frequency: 62.5Hz)
● We will select None filter and,

● FFT length: 16.

f = 62.5 # Hertz

wind_sec = 2 # seconds

FFT_Lenght = 16

axis = ['accX', 'accY', 'accZ']

n_sensors = len(axis)

Selecting the Raw Features on the Studio Spectral Analysis tab, we can copy
all 375 data points of a particular 2 seconds window to the clipboard.





Paste the data points to a new variable data:

data=[-5.6330, 0.2376, 9.8701, -5.9442, 0.4830, 9.8701, -5.4217, ...]

No_raw_features = len(data)

N = int(No_raw_features/n_sensors)

The total raw features are 375, but we will work with each axis individually,
where N= 125 (number of samples per axis).

We aim to understand how Edge Impulse gets the processed features at the
end.

So, you should also past the processed features on a variable (to compare the
calculated features in Python with the ones provided by the Studio) :

features = [2.7322, -0.0978, -0.3813, 2.3980, 3.8924, 24.6841, 9.6303, ...]

N_feat = len(features)

N_feat_axis = int(N_feat/n_sensors)

The total number of processed features is 39, which means 13 features/axis.

Looking at those 13 features closely, we will find 3 for the time domain (RMS,
Skewness, and Kurtosis):

● [rms] [skew] [kurtosis]

leaving 10 for the frequency domain (we will return to this later).



● [spectral skew][spectral kurtosis][Spectral Power 1] ...

[Spectral Power 8]

Splitting raw data per sensor

The data has samples from all axis; let's split and plot them separately:

def plot_data(sensors, axis, title):

[plt.plot(x, label=y) for x,y in zip(sensors, axis)]

plt.legend(loc='lower right')

plt.title(title)

plt.xlabel('#Sample')

plt.ylabel('Value')

plt.box(False)

plt.grid()

plt.show()

accX = data[0::3]

accY = data[1::3]

accZ = data[2::3]

sensors = [accX, accY, accZ]

plot_data(sensors, axis, 'Raw Features')



Subtracting the mean

Next, we should subtract the mean from the data. Subtracting the mean from
a data set is a common data pre-processing step in statistics and machine
learning. The purpose of subtracting the mean from the data is to center the
data around zero. This is important because it can reveal patterns and
relationships that might be hidden if the data is not centered.

Here are some specific reasons why subtracting the mean can be useful:

● It simplifies analysis: By centering the data, the mean becomes zero,
making some calculations simpler and easier to interpret.

● It removes bias: If the data is biased, subtracting the mean can
remove it and allow for a more accurate analysis.

● It can reveal patterns: Centering the data can help uncover patterns
that might be hidden if the data is not centered. For example, centering
the data can help you identify trends over time if you analyze a time
series dataset.

● It can improve performance: In some machine learning algorithms,
centering the data can improve performance by reducing the influence
of outliers and making the data more easily comparable. Overall,
subtracting the mean is a simple but powerful technique that can be
used to improve the analysis and interpretation of data.

dtmean = [(sum(x)/len(x)) for x in sensors]

[print('mean_'+x+'= ', round(y, 4)) for x,y in zip(axis, dtmean)][0]

accX = [(x - dtmean[0]) for x in accX]

accY = [(x - dtmean[1]) for x in accY]

accZ = [(x - dtmean[2]) for x in accZ]

sensors = [accX, accY, accZ]

plot_data(sensors, axis, 'Raw Features - Subctract the Mean')



RMS Calculation

The RMS value of a set of values (or a continuous-time waveform) is the
square root of the arithmetic mean of the squares of the values or the square
of the function that defines the continuous waveform. In physics, the RMS
current value can also be defined as the "value of the direct current that
dissipates the same power in a resistor."

In the case of a set of n values {𝑥1, 𝑥2, …, 𝑥𝑛}, the RMS is:

NOTE that the RMS value is different for the original raw data and after
subtracting the mean

# Using numpy and standartized data (subtracting mean)

rms = [np.sqrt(np.mean(np.square(x))) for x in sensors]



We can compare the calculated RMS values here with the ones presented by
Edge Impulse:

[print('rms_'+x+'= ', round(y, 4)) for x,y in zip(axis, rms)][0]

print("\nCompare with Edge Impulse result features")

print(features[0:N_feat:N_feat_axis])

rms_accX= 2.7322

rms_accY= 0.7833

rms_accZ= 0.1383

Compared with Edge Impulse result features:

[2.7322, 0.7833, 0.1383]

Skewness and kurtosis calculation

In statistics, skewness, and kurtosis are two ways to measure the shape of a
distribution.

Here we can see the sensors values distribution:

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(13, 4))

sns.kdeplot(accX, fill=True, ax=axes[0])

sns.kdeplot(accY, fill=True, ax=axes[1])

sns.kdeplot(accZ, fill=True, ax=axes[2])

axes[0].set_title('accX')

axes[1].set_title('accY')

axes[2].set_title('accZ')

plt.suptitle('IMU Sensors distribution', fontsize=16, y=1.02)

plt.show()



Skewness is a measure of the asymmetry of a distribution. This value can be
positive or negative.

● A negative skew indicates that the tail is on the left side of the
distribution, which extends towards more negative values.

● A positive skew indicates that the tail is on the right side of the
distribution, which extends towards more positive values.

● A zero value indicates no skewness in the distribution at all, meaning
the distribution is perfectly symmetrical.

skew = [skew(x, bias=False) for x in sensors]

[print('skew_'+x+'= ', round(y, 4)) for x,y in zip(axis, skew)][0]

print("\nCompare with Edge Impulse result features")

features[1:N_feat:N_feat_axis]

https://en.wikipedia.org/wiki/Skewness


skew_accX= -0.099

skew_accY= 0.1756

skew_accZ= 6.9463

Compared with Edge Impulse result features:

[-0.0978, 0.1735, 6.8629]

Kurtosis is a measure of whether or not a distribution is a heavy-tailed or
light-tailed relative to a normal distribution.

● The kurtosis of a normal distribution is zero.
● If a given distribution with a negative kurtosis, it is said to be playkurtic,

which means it tends to produce fewer and less extreme outliers than
the normal distribution.

● If a given distribution has a kurtosis positive, it is said to be leptokurtic,
which means it tends to produce more outliers than the normal
distribution.

kurt = [kurtosis(x, bias=False) for x in sensors]

[print('kurt_'+x+'= ', round(y, 4)) for x,y in zip(axis, kurt)][0]

print("\nCompare with Edge Impulse result features")

features[2:N_feat:N_feat_axis]

https://en.wikipedia.org/wiki/Kurtosis


kurt_accX= -0.3475

kurt_accY= 1.2673

kurt_accZ= 68.1123

Compared with Edge Impulse result features:

[-0.3813, 1.1696, 65.3726]

Spectral features

The filtered signal is passed to the Spectral power section, which computes
the FFT to generate the spectral features.

Once the sampled window usually is larger than the FFT size, the window will
be broken into frames (or "sub-windows"), and the FFT is calculated from
each frame.

FFT length - The FFT size. This determines the number of FFT bins and the
resolution of frequency peaks that you can separate. A lower number means
more signals will average together in the same FFT bin, but it also reduces
the number of features and model size. A higher number will separate more
signals into separate bins, generating a larger model.

● The total number of Spectral Power features will change depending on
how you set the filter and FFT parameters. With No filtering, the
number of features is 1/2 of the FFT Length.

Spectral Power - Welch’s method

We should use Welch's method to split the signal on the frequency domain in
bins and calculate the power spectrum for each bin. This method divides the
signal into overlapping segments, applies a window function to each segment,

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html


computes the periodogram of each segment using DFT, and averages them to
obtain a smoother estimate of the power spectrum.

# Function used by Edge Impulse instead scipy.signal.welch().

def welch_max_hold(fx, sampling_freq, nfft, n_overlap):

n_overlap = int(n_overlap)

spec_powers = [0 for _ in range(nfft//2+1)]

ix = 0

while ix <= len(fx):

# Slicing truncates if end_idx > len, and rfft will auto zero pad

fft_out = np.abs(np.fft.rfft(fx[ix:ix+nfft], nfft))

spec_powers = np.maximum(spec_powers, fft_out**2/nfft)

ix = ix + (nfft-n_overlap)

return np.fft.rfftfreq(nfft, 1/sampling_freq), spec_powers

Applying the above function to 3 signals:

fax,Pax = welch_max_hold(accX, fs, FFT_Lenght, 0)

fay,Pay = welch_max_hold(accY, fs, FFT_Lenght, 0)

faz,Paz = welch_max_hold(accZ, fs, FFT_Lenght, 0)

specs = [Pax, Pay, Paz ]

We can plot the Power Spectrum P(f):

plt.plot(fax,Pax, label='accX')

plt.plot(fay,Pay, label='accY')

plt.plot(faz,Paz, label='accZ')

plt.legend(loc='upper right')

plt.xlabel('Frequency (Hz)')

#plt.ylabel('PSD [V**2/Hz]')

plt.ylabel('Power')

plt.title('Power spectrum P(f) using Welch\'s method')

plt.grid()

plt.box(False)

plt.show()



Besides the Power Spectrum, we can also include the skewness and kurtosis
of the features in the frequency domain (should be available on a new
version):

spec_skew = [skew(x, bias=False) for x in specs]

spec_kurtosis = [kurtosis(x, bias=False) for x in specs]

Let's now list all Spectral features per axis and compare them with EI:

print("EI Processed Spectral features (accX): ")

print(features[3:N_feat_axis][0:])

print("\nCalculated features:")

print (round(spec_skew[0],4))

print (round(spec_kurtosis[0],4))

[print(round(x, 4)) for x in Pax[1:]][0]

EI Processed Spectral features (accX):

2.398, 3.8924, 24.6841, 9.6303, 8.4867, 7.7793, 2.9963, 5.6242,

3.4198, 4.2735



Calculated features:

2.9069 8.5569 24.6844 9.6304 8.4865 7.7794 2.9964 5.6242 3.4198

4.2736

print("EI Processed Spectral features (accY): ")

print(features[16:26][0:]) #13: 3+N_feat_axis; 26 = 2x N_feat_axis

print("\nCalculated features:")

print (round(spec_skew[1],4))

print (round(spec_kurtosis[1],4))

[print(round(x, 4)) for x in Pay[1:]][0]

EI Processed Spectral features (accY):

0.9426, -0.8039, 5.429, 0.999, 1.0315, 0.9459, 1.8117, 0.9088,

1.3302, 3.112

Calculated features:

1.1426 -0.3886 5.4289 0.999 1.0315 0.9458 1.8116 0.9088 1.3301

3.1121

print("EI Processed Spectral features (accZ): ")

print(features[29:][0:]) #29: 3+(2*N_feat_axis);

print("\nCalculated features:")

print (round(spec_skew[2],4))

print (round(spec_kurtosis[2],4))

[print(round(x, 4)) for x in Paz[1:]][0]

EI Processed Spectral features (accZ):

0.3117, -1.3812, 0.0606, 0.057, 0.0567, 0.0976, 0.194, 0.2574,

0.2083, 0.166

Calculated features:

0.3781 -1.4874 0.0606 0.057 0.0567 0.0976 0.194 0.2574 0.2083

0.166



Time-frequency domain

Edge Impulse should soon release another powerful tool for Feature
Extraction,Wavelets.

When this tutorial was written, for Developer's account, the Wavelet
option was not available at the start, but only when one of the EON
Tuner's resultant optimal architecture is selected.

Wavelets

Wavelet is a powerful technique for analyzing signals with transient features or
abrupt changes, such as spikes or edges, which are difficult to interpret with
traditional Fourier-based methods.

Wavelet transforms work by breaking down a signal into different frequency
components and analyzing them individually. The transformation is achieved
by convolving the signal with a wavelet function, a small waveform centered
at a specific time and frequency. This process effectively decomposes the
signal into different frequency bands, each of which can be analyzed
separately.

One of the key benefits of wavelet transforms is that they allow for
time-frequency analysis, which means that they can reveal the frequency
content of a signal as it changes over time. This makes them particularly
useful for analyzing non-stationary signals, which vary over time.

Wavelets have many practical applications, including signal and image
compression, denoising, feature extraction, and image processing.

https://en.wikipedia.org/wiki/Wavelet


Let's select Wavelet on the Spectral Features block in the same project:

● Type: Wavelet

● Wavelet Decomposition Level: 1

● Wavelet: bior1.3



The Wavelet Function

wavelet_name='bior1.3'

num_layer = 1

wavelet = pywt.Wavelet(wavelet_name)

[phi_d,psi_d,phi_r,psi_r,x] = wavelet.wavefun(level=5)

plt.plot(x, psi_d, color='red')

plt.title('Wavelet Function')

plt.ylabel('Value')

plt.xlabel('Time')

plt.grid()

plt.box(False)

plt.show()

Same as we did before, let's copy and past the Processed Features:



features = [3.6251, 0.0615, 0.0615, -7.3517, -2.7641, 2.8462, 5.0924, ...]

N_feat = len(features)

N_feat_axis = int(N_feat/n_sensors)

Edge Impulse computes the Discrete Wavelet Transform (DWT) for each one
of the Wavelet Decomposition levels selected. After that, the features will be
extracted.

In the case ofWavelets, the extracted features are basic statistical values,
crossing values, and entropy. There are, in total, 14 features per layer as
below:

● [11] Features: n5, n25, n75, n95, mean, median, standard
deviation (std), variance (var) and root mean square (rms), kurtosis,
and skewness (skew) are calculated.

● [2] Features: Zero crossing rate (zcross) and mean crossing rate
(mcross) are the times that the signal passes through the baseline (y
= 0) and the average level (y = u) per unit of time, respectively

● [1] Feature: Entropy features are a characteristic measure of signal
complexity

All above 14 values are calculated for each Layer (including L0, the original
signal)

● The total number of features varies depending on how you set the filter
and the number of layers. For example, with [None] filtering and

Level[1], the number of features per axis will be 14 x 2 (L0 and L1) =

28. For the three axes, we will have a total of 84 features.

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html


Wavelet Analysis

Wavelet analysis decomposes the signal (accX, accY, and accZ) into
different frequency components using a set of filters applied to the signal,
which separates these components into low-frequency (slowly varying parts of
the signal containing long-term patterns), here accX_l1, accY_l1, accZ_l1
and, high-frequency (rapidly varying parts of the signal containing short-term
patterns) components, here accX_d1, accY_d1, accZ_d1, allowing for the
extraction of features for further analysis or classification.

Only the low-frequency components (approximation coefficients, or cA) will be
used. In this example, we assume only one level (Single level Discrete
Wavelet Transform), where the function will return a tuple. With a multilevel
decomposition, the "Multilevel 1D Discrete Wavelet Transform", the result will
be a list (for detail, please see: Discrete Wavelet Transform (DWT) )

(accX_l1, accX_d1) = pywt.dwt(accX, wavelet_name)

(accY_l1, accY_d1) = pywt.dwt(accY, wavelet_name)

(accZ_l1, accZ_d1) = pywt.dwt(accZ, wavelet_name)

sensors_l1 = [accX_l1, accY_l1, accZ_l1]

# Plot power spectrum versus frequency

plt.plot(accX_l1, label='accX')

plt.plot(accY_l1, label='accY')

plt.plot(accZ_l1, label='accZ')

plt.legend(loc='lower right')

plt.xlabel('Time')

plt.ylabel('Value')

plt.title('Wavelet Approximation')

plt.grid()

plt.box(False)

plt.show()

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html


Feature Extraction

Let's start with the basic statistical features. Note that we apply the function for
both the original signals and the resultant cAs from the DWT:

def calculate_statistics(signal):

n5 = np.percentile(signal, 5)

n25 = np.percentile(signal, 25)

n75 = np.percentile(signal, 75)

n95 = np.percentile(signal, 95)

median = np.percentile(signal, 50)

mean = np.mean(signal)

std = np.std(signal)

var = np.var(signal)

rms = np.sqrt(np.mean(np.square(signal)))

return [n5, n25, n75, n95, median, mean, std, var, rms]

stat_feat_l0 = [calculate_statistics(x) for x in sensors]

stat_feat_l1 = [calculate_statistics(x) for x in sensors_l1]

The Skelness and Kurtosis:

skew_l0 = [skew(x, bias=False) for x in sensors]

skew_l1 = [skew(x, bias=False) for x in sensors_l1]

kurtosis_l0 = [kurtosis(x, bias=False) for x in sensors]

kurtosis_l1 = [kurtosis(x, bias=False) for x in sensors_l1]



Zero crossing (zcross) is the number of times the wavelet coefficient crosses
the zero axis. It can be used to measure the signal's frequency content since
high-frequency signals tend to have more zero crossings than low-frequency
signals.

Mean crossing (mcross), on the other hand, is the number of times the
wavelet coefficient crosses the mean of the signal. It can be used to measure
the signal's amplitude since high-amplitude signals tend to have more mean
crossings than low-amplitude signals.

def getZeroCrossingRate(arr):

my_array = np.array(arr)

zcross = float("{0:.2f}".format((((my_array[:-1] * my_array[1:]) < 0).su

m())/len(arr)))

return zcross

def getMeanCrossingRate(arr):

mcross = getZeroCrossingRate(np.array(arr) - np.mean(arr))

return mcross

def calculate_crossings(list):

zcross=[]

mcross=[]

for i in range(len(list)):

zcross_i = getZeroCrossingRate(list[i])

zcross.append(zcross_i)

mcross_i = getMeanCrossingRate(list[i])

mcross.append(mcross_i)

return zcross, mcross

cross_l0 = calculate_crossings(sensors)

cross_l1 = calculate_crossings(sensors_l1)

In wavelet analysis, entropy refers to the degree of disorder or randomness in
the distribution of wavelet coefficients. Here we used Shannon entropy, which
measures a signal's uncertainty or randomness. It is calculated as the
negative sum of the probabilities of the different possible outcomes of the
signal multiplied by their logarithm base 2. In the context of wavelet analysis,



Shannon entropy can be used to measure the complexity of the signal, with
higher values indicating greater complexity.

def calculate_entropy(signal, base=None):

value, counts = np.unique(signal, return_counts=True)

return entropy(counts, base=base)

entropy_l0 = [calculate_entropy(x) for x in sensors]

entropy_l1 = [calculate_entropy(x) for x in sensors_l1]

Let's now list all wavelets features and create a list by layers.

L1_features_names = ["L1-n5", "L1-n25", "L1-n75", "L1-n95", "L1-median", "L1-mean",

"L1-std", "L1-var", "L1-rms", "L1-skew", "L1-Kurtosis", "L1-zcross", "L1-mcross",

"L1-entropy"]

L0_features_names = ["L0-n5", "L0-n25", "L0-n75", "L0-n95", "L0-median", "L0-mean",

"L0-std", "L0-var", "L0-rms", "L0-skew", "L0-Kurtosis", "L0-zcross", "L0-mcross",

"L0-entropy"]

all_feat_l0 = []

for i in range(len(axis)):

feat_l0 =

stat_feat_l0[i]+[skew_l0[i]]+[kurtosis_l0[i]]+[cross_l0[0][i]]+[cross_l0[1][i]]+[en

tropy_l0[i]]

[print(axis[i]+' '+x+'= ', round(y, 4)) for x,y in zip(L0_features_names,

feat_l0)][0]

all_feat_l0.append(feat_l0)

all_feat_l0 = [item for sublist in all_feat_l0 for item in sublist]

print(f"\nAll L0 Features = {len(all_feat_l0)}")

all_feat_l1 = []

for i in range(len(axis)):

feat_l1 =

stat_feat_l1[i]+[skew_l1[i]]+[kurtosis_l1[i]]+[cross_l1[0][i]]+[cross_l1[1][i]]+[en

tropy_l1[i]]

[print(axis[i]+' '+x+'= ', round(y, 4)) for x,y in zip(L1_features_names,

feat_l1)][0]

all_feat_l1.append(feat_l1)

all_feat_l1 = [item for sublist in all_feat_l1 for item in sublist]

print(f"\nAll L1 Features = {len(all_feat_l1)}")



Conclusion

Edge Impulse Studio is a powerful online platform that can handle the
pre-processing task for us. Still, as engineers are capital, we understand what
is happening under the hood. This knowledge will help us to find the best
options and/or hyper-parameters for tuning our projects.

Daniel Situnayake wrote in his blog: "Raw sensor data is highly dimensional
and noisy. Digital signal processing algorithms help us sift the signal from the
noise. DSP is an incredibly important part of embedded engineering, and

https://situnayake.com/


many edge processors have on-board acceleration for DSP. As an ML
engineer, learning basic DSP gives you superpowers for handling high
frequency time series data in your models." (I recommend you read Dan's
excellent post in its totality nn to cpp: What you need to know about porting
deep learning models to the edge).

Knowing more

If you want to learn more about Embedded Machine Learning (TinyML),
please see these references:

● "TinyML - Machine Learning for Embedding Devices" - UNIFEI
● "Professional Certificate in Tiny Machine Learning (TinyML)" –

edX/Harvard
● "Introduction to Embedded Machine Learning" - Coursera/Edge

Impulse
● "Computer Vision with Embedded Machine Learning" - Coursera/Edge

Impulse
● "Deep Learning with Python" by François Chollet
● “TinyML” by Pete Warden, Daniel Situnayake
● "TinyML Cookbook" by Gian Marco Iodice
● "AI at the Edge" book by Daniel Situnayake, Jenny Plunkett

On the TinyML4D website, You can find lots of educational materials on
TinyML. They are all free and open-source for educational uses – we ask that
if you use the material, please cite them! TinyML4D is an initiative to make
TinyML education available to everyone globally.

https://situnayake.com/2023/03/21/nn-to-cpp.html
https://situnayake.com/2023/03/21/nn-to-cpp.html
https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning
https://www.manning.com/books/deep-learning-with-python
https://www.oreilly.com/library/view/tinyml/9781492052036/
https://github.com/PacktPublishing/TinyML-Cookbook
https://www.oreilly.com/library/view/ai-at-the/9781098120191/
https://tinyml.seas.harvard.edu/courses/

